Klaytn 문서 아카이브
시작하기스마트 컨트랙트노드 운영dApp 개발자
  • Klaytn 문서
  • -
    • Klaytn Overview
      • 왜 클레이튼일까요?
      • 클레이튼 디자인
        • 합의 메커니즘
        • 계정
        • 트랜잭션
          • 기본
          • 수수료 위임 트랜잭션
          • 수수료 부분 위임 트랜잭션
          • Ethereum
        • 연산
          • 클레이튼 스마트 컨트랙트
          • 실행 모델(Execution Model)
          • Computation Cost
            • 연산 비용 (구 버전 문서)
          • Klaytn 가상머신
            • 클레이튼 가상머신 (구 버전 문서)
        • 스토리지
        • 트랜잭션 비용
          • 트랜잭션 비용 (구 버전 문서)
        • 클레이튼의 네이티브 코인 - KLAY
        • 토큰 이코노미
        • 거버넌스
        • 다중 채널
        • KNI
      • 확장성 솔루션
    • Getting Started
      • Deploying Smart Contract Using Foundry
      • Deploying Smart Contract Using Hardhat
      • Deploying Smart Contract Using KEN
        • Launch an Endpoint Node
        • Top up your Account
        • Install Development Tools
        • Deploy a Smart Contract
        • Check the Deployment
        • Account Management
          • Creating Accounts
          • Managing Accounts
      • Development Environment
      • Getting KLAY
    • 스마트 컨트랙트
      • 솔리디티 - 스마트 컨트랙트 언어
      • 미리 컴파일된 컨트랙트
        • 미리 컴파일된 컨트랙트 (구 버전 문서)
      • IDE 및 도구
        • Truffle
      • 샘플 컨트랙트
        • KlaytnGreeter
        • ERC-20
          • 1. ERC-20 스마트 컨트랙트 작성
          • 2. 스마트 컨트랙트 배포
          • 3. 클레이튼 월렛에서 ERC-20 토큰 사용
        • ERC-721
          • 1. ERC-721 스마트 컨트랙트 작성
          • 2. Deploying Smart Contract
      • 테스트 가이드
      • 배포 가이드
      • 클레이튼 호환 토큰
      • 이더리움 컨트랙트 이식
    • Run a Node
      • 배포
        • Endpoint Node
          • 시스템 요구사항
          • 설치 가이드
            • 다운로드
            • Installation Guide
            • 환경설정
            • EN 실행하기
            • 설치 테스트하기
          • ken CLI 명령어
          • JSON-RPC API
        • 코어 셀
          • System Requirements
          • 네트워크 설정
          • Installation Guide
            • Download
            • 설치하기 전에
            • 컨센서스 노드 설정
              • Installation Guide
              • Configuration
              • CN 실행하기
            • 프록시 노드 설정
              • Installation Guide
              • Configuration
              • PN 실행하기
            • 코어 셀 테스트하기
          • 모니터링 설정
          • H/A 설정
        • Service Chain
          • Getting Started
            • 4개 노드 서비스 체인 설정하기
            • Connecting to Baobab
            • 크로스체인 토큰 전송
            • HA(High Availability) for ServiceChain
            • Nested ServiceChain
            • Value Transfer between Sibling ServiceChains
          • 참조 매뉴얼
            • System Requirements
            • Download
            • SCN User Guide
              • Installation
              • Configuration
              • SCN 실행 및 중지하기
              • 노드 상태 확인하기
              • kscn commands
              • homi commands
            • SPN/SEN User Guide
              • Installation
              • Configuration
              • 노드 실행 및 중지
              • Checking Node Status
            • Bridge Configuration
            • 앵커링
            • KAS 앵커링
            • 토큰 전송
            • Configuration Files
            • 로그 파일
            • Genesis JSON
            • 업그레이드 및 하드포크
          • How-To Guides
        • Download Node Packages
          • v1.11.1
          • v1.11.0
          • v1.10.2
          • v1.10.1
          • v1.10.0
          • v1.9.1
          • v1.9.0
          • v1.8.4
          • v1.8.3
          • v1.8.2
          • v1.8.1
          • v1.8.0
          • v1.7.3
          • v1.7.2
          • v1.7.1
          • v1.7.0
          • v1.6.4
          • v1.6.3
          • v1.6.2
          • v1.6.1
          • v1.6.0
          • v1.5.3
          • v1.5.2
          • v1.5.1
          • v1.5.0
          • v1.4.2
          • v1.4.1
          • v1.4.0
          • v1.3.0
          • v1.2.0
          • v1.1.1
          • v1.0.0
          • v0.9.6
          • v0.8.2
    • 운영 가이드
      • Configuration
      • 노드 로그
      • Log operation
      • 에러 및 문제 해결
      • Klaytn Command
      • Chaindata Change
      • Chaindata Migration
    • dApp Developers
      • JSON-RPC APIs
        • API references
          • eth
            • Caution
            • Account
            • Block
            • Transaction
            • Config
            • Filter
            • Gas
            • Miscellaneous
          • klay
            • Account
            • Block
            • Transaction
              • Working with Klaytn Transaction Types
            • Configuration
            • Filter
            • Gas
            • Miscellaneous
          • net
          • debug
            • Logging
            • Profiling
            • Runtime Tracing
            • Runtime Debugging
            • VM Tracing
            • VM Standard Tracing
            • Blockchain Inspection
          • admin
          • personal
          • txpool
          • governance
        • Service Chain API references
          • mainbridge
          • subbridge
        • Transaction Error Codes
      • RPC Service Providers
        • Public Endpoints
      • SDK & Libraries for interacting with Klaytn Node
        • caver-js
          • Getting Started
          • Sending a sample transaction
          • API references
            • caver.account
            • caver.wallet
              • caver.wallet.keyring
            • caver.transaction
              • Basic
              • Fee Delegation
              • Partial Fee Delegation
            • caver.rpc
              • caver.rpc.klay
              • caver.rpc.net
              • caver.rpc.governance
            • caver.contract
            • caver.abi
            • caver.kct
              • caver.kct.kip7
              • caver.kct.kip17
              • caver.kct.kip37
            • caver.validator
            • caver.utils
            • caver.ipfs
          • caver-js ~v1.4.1
            • Getting Started (~v1.4.1)
            • API references
              • caver.klay
                • Account
                • Block
                • Transaction
                  • Legacy
                  • Value Transfer
                  • Value Transfer Memo
                  • Account Update
                  • Smart Contract Deploy
                  • Smart Contract Execution
                  • Cancel
                • Configuration
                • Filter
                • Miscellaneous
              • caver.klay.net
              • caver.klay.accounts
              • caver.klay.Contract
              • caver.klay.KIP7
              • caver.klay.KIP17
              • caver.klay.abi
              • caver.utils (~v1.4.1)
            • Porting from web3.js
        • caver-java
          • Getting Started
          • API references
          • caver-java ~v1.4.0
            • Getting Started (~v1.4.0)
            • Porting from web3j
        • ethers.js
        • web3.js
      • Tutorials
        • Klaytn Online Toolkit
        • Fee Delegation Example
        • Count DApp
          • 1. Environment Setup
          • 2. Clone Count DApp
          • 3. Directory Structure
          • 4. Write Smart Contract
          • 5. Frontend Code Overview
            • 5-1. Blocknumber Component
            • 5-2. Auth Component
            • 5-3. Count Component
          • 6. Deploy Contract
          • 7. Run App
        • Klaystagram
          • 1. Environment Setup
          • 2. Clone Klaystagram DApp
          • 3. Directory Structure
          • 4. Write Klaystagram Smart Contract
          • 5. Deploy Contract
          • 6. Frontend Code Overview
          • 7. FeedPage
            • 7-1. Connect Contract to Frontend
            • 7-2. UploadPhoto Component
            • 7-3. Feed Component
            • 7-4. TransferOwnership Component
          • 8. Run App
        • Building a Buy Me a Coffee dApp
          • 1. Project Setup
          • 2. Creating a BMC Smart Contract
          • 3. Testing the contract using scripts
          • 4. Deploying BMC Smart contract
          • 5. Building the BMC Frontend with React and Web3Onboard
          • 6. Deploying Frontend code on IPFS using Fleek
          • 7. Conclusion
        • Migrating Ethereum App to Klaytn
        • Connecting MetaMask
        • Connecting Remix
        • Verifying Smart Contracts Using Block Explorers
      • Developer Tools
        • Wallets
          • Kaikas
          • Klaytn Wallet
          • Klaytn Safe
            • Klaytn Safe Design
            • Create a Safe
            • Add assets
            • Send assets
            • Contract Interaction
            • Transaction Builder
            • Points to Note
            • Frequently Asked Questions
          • Wallet Libraries
            • Web3Auth
            • Web3Modal
            • Web3-Onboard
        • Oracles
          • Orakl Network
          • Witnet
          • SupraOracles
        • Block Explorers
          • Klaytnscope
          • Klaytnfinder
        • Klaytn Contracts Wizard
    • Glossary
  • ---
    • Klaytn 하드포크
    • 클레이튼 2.0
      • 메타버스 패키지
      • 완결성과 개선 사항들
      • 이더리움 호환성
      • 거버넌스 탈중앙화
      • 대규모 에코 펀드
    • FAQ
    • 오픈 소스
    • 이용약관
    • 지원 언어
  • ℹ️최신 Klaytn 문서
Powered by GitBook
On this page
  • Address 0x01: ecrecover(hash, v, r, s)
  • Address 0x02: sha256(data)
  • Address 0x03: ripemd160(data)
  • Address 0x04: datacopy(data)
  • Address 0x05: bigModExp(base, exp, mod)
  • Address 0x06: bn256Add(ax, ay, bx, by)
  • Address 0x07: bn256ScalarMul(x, y, scalar)
  • Address 0x08: bn256Pairing(a1, b1, a2, b2, a3, b3, ..., ak, bk)
  • Address 0x09: blake2F(rounds, h, m, t, f)
  • 0x3fd 주소: vmLog(str)
  • 0x3fe 주소: feePayer()
  • 0x3ff 주소: validateSender()

Was this helpful?

  1. -
  2. 스마트 컨트랙트

미리 컴파일된 컨트랙트

Previous솔리디티 - 스마트 컨트랙트 언어Next미리 컴파일된 컨트랙트 (구 버전 문서)

Last updated 2 years ago

Was this helpful?

Klaytn provides several useful precompiled contracts. These contracts are implemented in the platform itself as a native implementation. 미리 컴파일된 컨트랙트 중 주소 0x01부터 0x08까지의 컨트랙트는 이더리움에서 구현된 것과 동일합니다. 여기에 추가로 Klaytn은 이더리움에 없는 새로운 기능을 지원하기 위해 주소 0x09부터 0x0B까지의 미리 컴파일된 컨트랙트를 제공합니다.

NOTE: Three precompiled contract addresses have been changed, and blake2F was added after the IstanbulEVM protocol upgrade, or the "hard fork".

IstanbulEVM protocol upgrade block number is as follows.

  • Baobab Testnet: #75373312

  • Cypress Mainnet: #86816005

Contracts deployed before the protocol upgrade should use the original addresses.

  • case 1) The contracts deployed in Baobab at block number #75373310 recognizes 0x09, 0x0a, and 0x0b as addresses of vmLog, feePayer, and validateSender, respectively, and blake2f cannot be used.

  • case 2) The contracts deployed in Baobab at block number #75373314 recognizes 0x09 as the address of blake2f, and recognizes 0x3fd, 0x3fe, and 0xff as addresses of vmLog, feePayer, and validateSender.

If you want the previous document, please refer to .

precompiled contract
addresses used in the contracts deployed before v1.7.0 protocol update activation
address used in the contracts deployed after v1.7.0 protocol update activation

vmLog

0x09

0x3fd

feePayer

0x0a

0x3fe

validateSender

0x0b

0x3ff

Address 0x01: ecrecover(hash, v, r, s)

The address 0x01 implements ecrecover. It returns the address from the given signature by calculating a recovery function of ECDSA. Its function prototype is as follows:

function ecrecover(bytes32 hash, bytes8 v, bytes32 r, bytes32 s) returns (address);

Address 0x02: sha256(data)

The address 0x02 implements SHA256 hash. It returns a SHA256 hash from the given data. Its function prototype is as follows:

function sha256(bytes data) returns (bytes32);

Address 0x03: ripemd160(data)

The address 0x03 implements RIPEMD160 hash. It returns a RIPEMD160 hash from the given data. Its function prototype is as follows:

function ripemd160(bytes data) returns (bytes32);

Address 0x04: datacopy(data)

The address 0x04 implements datacopy (i.e., identity function). It returns the input data directly without any modification. This precompiled contract is not supported by the Solidity compiler. The following code with inline assembly can be used to call this precompiled contract.

function callDatacopy(bytes memory data) public returns (bytes memory) {
    bytes memory ret = new bytes(data.length);
    assembly {
        let len := mload(data)
        if iszero(call(gas, 0x04, 0, add(data, 0x20), len, add(ret,0x20), len)) {
            invalid()
        }
    }

    return ret;
}     

Address 0x05: bigModExp(base, exp, mod)

The address 0x05 implements the formula base**exp % mod. It returns the result from the given data. This precompiled contract is not supported by the Solidity compiler. The following code can be used to call this precompiled contract. Note that although this precompiled contract supports an arbitrary length of inputs, the below code uses a fixed length of inputs as an example.

function callBigModExp(bytes32 base, bytes32 exponent, bytes32 modulus) public returns (bytes32 result) {
    assembly {
        // free memory pointer
        let memPtr := mload(0x40)

        // length of base, exponent, modulus
        mstore(memPtr, 0x20)
        mstore(add(memPtr, 0x20), 0x20)
        mstore(add(memPtr, 0x40), 0x20)

        // assign base, exponent, modulus
        mstore(add(memPtr, 0x60), base)
        mstore(add(memPtr, 0x80), exponent)
        mstore(add(memPtr, 0xa0), modulus)

        // call the precompiled contract BigModExp (0x05)
        let success := call(gas, 0x05, 0x0, memPtr, 0xc0, memPtr, 0x20)
        switch success
        case 0 {
            revert(0x0, 0x0)
        } default {
            result := mload(memPtr)
        }
    }
}

Address 0x06: bn256Add(ax, ay, bx, by)

The address 0x06 implements a native elliptic curve point addition. It returns an elliptic curve point representing (ax, ay) + (bx, by) such that (ax, ay) and (bx, by) are valid points on the curve bn256. This precompiled contract is not supported by the Solidity compiler. The following code can be used to call this precompiled contract.

function callBn256Add(bytes32 ax, bytes32 ay, bytes32 bx, bytes32 by) public returns (bytes32[2] memory result) {
    bytes32[4] memory input;
    input[0] = ax;
    input[1] = ay;
    input[2] = bx;
    input[3] = by;
    assembly {
        let success := call(gas, 0x06, 0, input, 0x80, result, 0x40)
        switch success
        case 0 {
            revert(0,0)
        }
    }
}

Address 0x07: bn256ScalarMul(x, y, scalar)

The address 0x07 implements a native elliptic curve multiplication with a scalar value. It returns an elliptic curve point representing scalar * (x, y) such that (x, y) is a valid curve point on the curve bn256. This precompiled contract is not supported by the Solidity compiler. The following code can be used to call this precompiled contract.

function callBn256ScalarMul(bytes32 x, bytes32 y, bytes32 scalar) public returns (bytes32[2] memory result) {
    bytes32[3] memory input;
    input[0] = x;
    input[1] = y;
    input[2] = scalar;
    assembly {
        let success := call(gas, 0x07, 0, input, 0x60, result, 0x40)
        switch success
        case 0 {
            revert(0,0)
        }
    }
}

Address 0x08: bn256Pairing(a1, b1, a2, b2, a3, b3, ..., ak, bk)

function callBn256Pairing(bytes memory input) public returns (bytes32 result) {
    // input is a serialized bytes stream of (a1, b1, a2, b2, ..., ak, bk) from (G_1 x G_2)^k
    uint256 len = input.length;
    require(len % 192 == 0);
    assembly {
        let memPtr := mload(0x40)
        let success := call(gas, 0x08, 0, add(input, 0x20), len, memPtr, 0x20)
        switch success
        case 0 {
            revert(0,0)
        } default {
            result := mload(memPtr)
        }
    }
}

Address 0x09: blake2F(rounds, h, m, t, f)

function callBlake2F(uint32 rounds, bytes32[2] memory h, bytes32[4] memory m, bytes8[2] memory t, bool f) public view returns (bytes32[2] memory) {
    bytes32[2] memory output;

    bytes memory args = abi.encodePacked(rounds, h[0], h[1], m[0], m[1], m[2], m[3], t[0], t[1], f);

    assembly {
        if iszero(staticcall(not(0), 0x09, add(args, 32), 0xd5, output, 0x40)) {
            revert(0, 0)
        }
    }

    return output;
}

0x3fd 주소: vmLog(str)

function callVmLog(bytes memory str) public {
    address(0x3fd).call(str);
}

0x3fe 주소: feePayer()

The address 0x3FE returns a fee payer of the executing transaction. This precompiled contract is not supported by the Solidity compiler. The following code can be used to call this precompiled contract.

function feePayer() internal returns (address addr) {
    assembly {
        let freemem := mload(0x40)
        let start_addr := add(freemem, 12)
        if iszero(call(gas, 0x3fe, 0, 0, 0, start_addr, 20)) {
          invalid()
        }
        addr := mload(freemem)
    }
}

0x3ff 주소: validateSender()

  • The sender's address to get the public keys

  • The message hash that is used to generate the signature

  • The signatures that are signed by the sender's private keys with the given message hash

The precompiled contract validates that the given signature is properly signed by the sender's private keys. Note that Klaytn natively support multi signatures, which means there can be multiple signatures. The signature must be 65 bytes long.

function ValidateSender(address sender, bytes32 msgHash, bytes sigs) public returns (bool) {
    require(sigs.length % 65 == 0);
    bytes memory data = new bytes(20+32+sigs.length);
    uint idx = 0;
    uint i;
    for( i = 0; i < 20; i++) {
        data[idx++] = (bytes20)(sender)[i];
    }
    for( i = 0; i < 32; i++ ) {
        data[idx++] = msgHash[i];
    }
    for( i = 0; i < sigs.length; i++) {
        data[idx++] = sigs[i];
    }
    assembly {
        // skip length header.
        let ptr := add(data, 0x20)
        if iszero(call(gas, 0x3ff, 0, ptr, idx, 31, 1)) {
          invalid()
        }
        return(0, 32)
    }
}

The address 0x08 implements elliptic curve paring operation to perform zkSNARK verification. For more information, see . This precompiled contract is not supported by the Solidity compiler. The following code can be used to call this precompiled contract.

The address 0x09 implements BLAKE2b F compression function. For more information, see . This precompiled contract is not supported by the Solidity compiler. The following code can be used to call this precompiled contract.

The address 0x3FD prints the specified string str to a specific file or passes it to the logger module. For more information, see . Note that this precompiled contract should be used only for debugging purposes, and it is required to enable the --vmlog option when the Klaytn node starts. Also, the log level of the Klaytn node should be 4 or more to see the output of vmLog. This precompiled contract is not supported by the Solidity compiler. The following code can be used to call this precompiled contract.

The address 0x3FF validates the sender's signature with the message. Since Klaytn , it is required to validate that a signature is properly signed by the corresponding sender. To do that, this precompiled contract receives three parameters:

previous document
EIP-197
EIP-152
debug_setVMLogTarget
decouples key pairs from addresses